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Abstract-A numerical method based on the Rayleigh principle is applied in conjunction with the
simplified Reissner- Mindlin theory which involves only a single variable. the transverse displace­
ment. for predicting the fundamental frequencies of rectangular plates with rectangular cutouts.
The predicted results are compared with the finite elements results and the reported works available
in the literature. It is concluded that the effect of rotary inertia can only be neglected for orthotropic
plates with high degrees of orthotropy. For isotropic plates. the effect of rotary inertia becomes
more pronounced with respect to the clTcct of transverse shear deformation with increased cutout
Slle.

NOTATION

a. b dimension of the plate
c. d dimension of the cutout

r ,. r, x coordinates of lhe corners (11' Ihe cutout
5 1.5 1 Y l.:oordinales of the corncrs of the l:1I1out

h t1l1ckness of the plale
k shear l:orrcl:tioTl fal.:lor :.0 ~

r. I' re..:tanglliar ..:oordlllale a.ses
f) Ilexural ngillity of an isotropi..: plate

f),. n, Ile.sural ngidities of an Llrtholropi..: plate
D, = I'"f), = v,.f),

[)" torsional rigidity of an orthotropi..: plate
/0: Young's l110dulus of an isotropi..: plale

1:'•• 1:', Young's l110duli of an orthotropi..: plate
(i shear l110dulus of an isotropi..: plale

G.,. G". G" shear I11l1duli of an ortlllltropi..: plate
Q•. Q. shear for..:es per unit length
S •. S, shear stIlrness of an orthotropie plaIt:

W. 11'" transverse delle..:tlon
I' mass density
l!J angular fre4ucn..:y
I. non-dlmt:nsional fre4ut:n..:y paramctt:r
V potential energy
r kinell": ent:rgy
\. Poisson's ratio of isotropi..: plates

~'l~ Poisson's ratio of orthutrl)pil.: platcs
cP .. cP. rotations.

l. I:-':TRODUCTION

The past research in the clTects of transverse shear deformation and rotary inertia on the
natural frequencies of plates have been mostly confined to plates without any cutout.
Numerical results for simply-supported squ,lre plates with central rectangular cutouts were
reported by Reddy (1982) and Tham ct al. (1986) based on the finite element method. Aksu
(1984) presented an analysis based on the finite difference analysis. All these approaches
used Reissner-M indlin plate theory to investigate the linear vibration of rectangular plates.
No known analytical results exist to the limited knowledge of the authors.

The aforementioned numerical methods need substantial computational effort. Fre­
quently, estimates of the natural frequencies of the fundamental and the first few higher
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modes are sufficient for engineering applications. This paper attempts to present a simple
numerical method based on the Rayleigh principle and the simplified Reissner-Mindlin
theory. originally proposed by Speare and Kemp (197i) for solving the plate bending
problem. for predicting the linear natural frequencies of rectangular plates with rectangular
cutouts. The method is illustrated for simply supported rectangular plates with central
cutouts. The predicted results are compared with the reported finite element results and
results generated by a finite element software package PAFEC.

~. ANALYSIS

The plate under consideration is a thin simply-supported rectangular plate of size a x h
having a central rectangular cutout of size c x d as shown in Fig. I. The plates are divided
into smaller sub-domains based on the mode shapes and the locations of the cutouts. The
sub~domain technique was first proposed by the authors (1986. 1987. 1990) for predicting
the natural frequencies of rectangular plates with cutouts and cracks based on the Classical
plate theory and the Rayleigh method. In order to apply the Rayleigh method for predicting
the natural frequencies. the kinetic energy and potential energy of the plate have to be
formulated in terms of a single variable. W. the transverse deflection of the plate. The
application of the Rayleigh-Ritz technique to the original Reissner-Mindlin formulation
for rectangular plates without cutout was reported by Dawe and Roufaeil (1980) and
Roufacil and Dawe (1982). Although formulation based on the RcissnerMindling theory
will generate more accurate results. the formulation and subsequent computation arc
more involved since the theory employs three independent variables namely the transverse
deflection. W. and rotations (P, and (fly.

The present formulation based on the simplified Reissner-Mindlin theory. proposed
by Speare and Kemp (1977). only involves a single variable ~V. For an orthotropic plate
with the principal axes of orthotropy coincide with the x and y directions of the plate, the
bending moments ,\,f,. My. and the twisting moment M,y are as follows

( I )

(2)

0)

in which

y
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Fig. I. A rectangular plate with a central rectangular cutout.
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oW Q.
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(4)

(5)

(6)

(7)

The shear correction factor k is taken to be ~ as proposed by Speare and Kemp (1977)
in their formulation of simplified Reissner theory for plate bending. If the rotary inertia
terms are neglected. Q. and Qy can be approximated by the following expressions:

Besides rotary inertial terms, in h4 and higher powers of h have also been neglected.
The potential energy. V and the kinetic energy, T of the plate are evaluated by

expressing 4>. and 4>y in terms of Wand substituting into the following expressions (Magrab,
1977) :

V=~ ff[Do (24).): +D (Of/Jy): + 2D
1

04>. of/Jy + D. (ocPo + OcP y)2
2 ox y oy ox oy y oy ox

( aW)2 ( aW)2J+S. cPo + ax +Sy cPr + ay dxdy ( 10)

(II)

To include the effect of rotary inertia, the expression for the kinetic energy is modified
as
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I ' \","[ , h: , h: , ]T= ;plwr W- ..... (tr+~-¢r dtd\'
- •• '12' 12' .. '

( 12)

Q, and Q, are first evaluated by neglecting the rotary terms. The resulting estimate for
the natural frequency of the plate is then substituted into eqns (8) and (9) to modify the
values of q, and Q~. ¢, and ¢~ are then re-evaluated. This iteration is performed until the
resulting natural frequency converges with an adequate order of accuracy. The expressions
for the iterations are as follows:

[¢,In-' iteration = ["""""".-'-/-'-'] [(P,ln iteration.p lor
1+ 12S,

I . . [ I ] l' .[(P, n-1 IteratIOn =-..----,-1-.' [¢, n IteratIon.. p I·W· .

1+ 12S~

For an isotropic plate, eqns (8) and (9) can be simplified to

(13)

( 14)

( 15)

(16)

ThL: potL:ntial and kinetic enL:rgy for an isotropic platL: ean thus be expressed with these
two L:xprL:ssions for Q, and Q~.

The simplified Reissner-Mindlin theory enables the potential and the kinetic energy
to be expressed in terms of the single variable, W. The method developed by the authors
(IYX6) for pn:dil:ting the natural frequencies of rectangular plates with cutouts can thus be
appliL:d to rL:ctangular plates taking into account both the transverse shear deformation
and rotary inertia. Numerical results based on eqns (10) and (II) take into consideration
the clrect of transverse shear deformation but neglcct the effect of rotary inertia. Both of
these cll'ects arc taken into account by applying eqns (10) and (12).

Simply-.\·u!'lwf(ed f('c(lIlIglllaf plare.\'
The method is illustrated for predicting the fundamental frequencies of simply·sup­

ported rectangular plates with centrally located cutouts. For the sub-domains of the rec­
tangular plate shown in Fig. I. the assumed dellection functions arc as follows:

I' . ItX
~v, = A, :.- Sill - •

- ·.1'1 (l

X It\'
W)=A)-sin·

h
· •

f l

. Itr I
A) = A I Sill

a
( 17)

A 1 and A.1 are determined by matching the maximum deflections of adjacent sub­
domains at the lower left-hand corner of the cutout. The assumed deflection functions
satisfy the following boundary conditions at the simply-supported edges
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x = O. a. W = 4>y = o.

y = O. b. W = 4>, = o.
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( 18)

(19)

The conditions for the in-plane displacements. u and L are not specified as the in-plane
displacements of the mid-plane are neglected for the present linear analysis.

The kinetic energy and potential energy are evaluated for each sub-domain using eqns
(10). (II) and (12). The total potential energy and kinetic energy of the plate are taken to
be the respective sums of each sub-domain. The natural frequency is then obtained by
equating the total potential energy to the total kinetic energy. The frequency is expressed
in terms of a non-dimensional frequency parameter given by

. ,!Ph
I. = wa- -J 0:'

Dy is replaced by D for isotropic plates.

(20)

Finite clement results
The finite clement results of rectangular plates allowing for both the transverse shear

deformation and rotary int.:rtia arc generatt.:d by a computer software package PAFEC. A
mesh of between 60 and 80 eight-node facet shell clements based on the Reissner-Mindlin
plilte theory is used in the finite clement analysis. In order to compare the results with the
reported finite clement results of Reddy (1982) which neglect the effect of rotary inertia.
the boundary conditions arc taken to be thill specified by Reddy (1982). namely.

x = O. a. W = cPr = /. = O.

y = O. h. ~v = cp, = /I = O.

(21 )

(22)

3, RESULTS AND DISCUSSION

The predicted results and the corresponding tinite clement results for the fundamental
mode of a simply-supported isotropic (v = 0.3) square plate with a central square cutout
are presented in Table I. Although the assumed function is only a one-term approximation,

Tabl<: I, Frequency parameter ;. for an isotropic square plate with a square cutout

Present method

Cutout size Thickness Shear and
cxd xa PAFEC Reddy Shear rotary inertia

O,Oa xO,Oa 0,001 \9,751 19,752 19,739 19,739
0,100 19,119 19,077 19,205 19,049
0,200 17.494 17,458 17,835 17,261

0,2a xO,2a 0.001 19,120 19,200 18,901 18.901
0,100 18,581 18,679 18,470 18,279
0,200 17,257 17,452 17,350 16,671

O,4a x 0.4a O,OO! 20,732 20,li07 20,556 20,556
0,100 20,005 20246 20,101 19,7lil
0,200 lli,44li 19,163 lli,975 17,879

O.5a x 0,5a 0,001 23235 23.515 23,329 23,329
O.!OO 22,390 22,li04 22.!i02 22.30li
0,200 20.318 21.554 21533 \9,8li\

O,6axO.6a 0,001 2X,241 28,453 28,49\ 2li,49\
0,100 26,61X 27,379 27,844 26,949
0,200 23,44X 25,668 26,301 23.434

0,8axO,Sa 0,001 57,452 57.512 58,847 58,846
0,100 46,65S 5\,465 57.615 51,424
0,200 32,S!!9 44,069 5·U64 39,079
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Fig. 2. Fundamental frequency pilfamcten for an isotropic square plate with a squilre l:utoul.
"--". shear. " ". shear and rotary inertia Reddy. "+". PAFEC.

the predicted results compare favorably with the corresponding finite clement results for
square plates with hili < 0.2 and for square cutout with c, d < 0.711. For a thick plate with
a large square cutout. the thickness of the plate can be of the same order. or even larger
than the remaining span of the side strip. The assumption of a plate structure no longer
holds for such a "plate".

The predicted results as well as the finite element results show that the effect of rotary
inertia becomes more pronounced with respect to the effect of transverse shear deformation
for increased size of cutout. The inclusion of rotary inertia reduces the natural frequencies
for thick plates (hili> 0.1) with large cutouts (c. d > 0.5a) by an additional amount com­
parable to, or even larger than the reduction caused by the shear deformation alone. The
discrepancies between the predicted results with and without the rotary inertia for a sq uare
plate increase with increased thickness of the plate. The trends are reflected in Fig. 2.

For an orthotropic plate with the principal axes of orthotropy parallel to the plate
edges. the present formulation is only applicable for a range of thicknesses depending on
the orthoropic properties and the aspect ratio of the plate. The predicted natural frequencies
show an increasing trend for the thickness larger than a certain critical value. It is not
surprising as the simplified Reissner-Mindlin theory is only an approximation ignoring
terms in h 4 and higher powers ofh. The error is expected to increase with increased thickness
and increased E,IEy ratio. For a simply-supported orthotropic plate with G" = G" = G" =

Table 2. The critical thickncss for the application oC the prescnt Cor·
mulation. G/£, = 0.5. v, - 0.25

£./£,
Critical

square plate
Thickness x h

Rectangular plate with a/h = 2

3
10
20
30
41)

>0.40
0.17
0.12
0.10
0.09

>0.40
0.33
0.24
0.20
0.17



Effects of transverse shear deformation and rotary inertia

70 r----~----r----r---_r_-___,,..._-___r--_r--....,..._-___,

1357

...

t
>0-

j

65

55

45

40
0 0.1 0.2 0.3

+

0.4

cia

O.S 0.6 0.7 0.8 0.9

0.9

0.-

f

Fi~. 3. FundalTlent;l1 frequcncy p;lr;lI11ctcrs ror a graphitc·epoxy square plate with ;l .;quare cutout.
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Fig. 4. Fundamental fn:4ucncy parameters for a graphite-epoxy square plate having a central
rectangular cutout with elle = 2. "--", shcar, " ", shear and rotary inertia hili = 0.1,

Reddy... +", hla = 0.001. Reddy.
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Fig. 5. Fundamental frequency paramcters for a graphlle-ep,ny squMe plate having a central
rectangular cutout with de = .1. ".- ". sheM. "- - .". shear and r(ltary IneTI/a ....... It. a c' 0.1.

Reddy ... + ". II a ~ 0.00 I. Reddy.

G, GfEy = 0.5 and \" = 0.25, the estimated eriti~al values of the plate thickness arc presented
in Table 2. The predicted natur~d frequencies decrease with increased plate thickness for a
rectangular or square plate with the thickness less than the corresponding critical value.

The predi~tcd natural frequen~ies and the reported tinite clement results by Reddy
(1982) for graphitt:-t:poxy orthotropic square plate with E,jEy = -10 having central rect­
angular and square cutouts ~lre presented in Figs 35. The drect of transverse shear
deformation is mort: pronounced for orthotropic platt:s with respect to the isotropic plates.
The additional reduction in natural freq uency caused by the effect of rotary inertia is
relatively small compared with the etrect of transverse shear deformation,

~. CO:"CLUSIO~

A numerical mt:thod based on the Rayleigh principle has been presented for predicting
the natural frequencies of rectangular plates with rectangular cutouts allowing for both the
transverse shear deformation and rotary inertia. It serves as a simple alternative to the
existing analytical and finite element methods as the computation only involves the inte­
gration of simple trigonometric functions.

The present analysis is applicable for a range of thicknesses depending on the ortho­
tropic properties and the aspect ratio of the plate. The common notion that the effect of
rotary inertia is negligible with respect to the ctfect of transverse shear deformation is found
to be valid only for orthotropic plates with a high degree of orthotropy. For isotropic
plates, the effect of rotary inertia becomes more pronounced as the size of cutout increases,
The additional reduction in frequency caused by the ctfect of rotary inertia is comparable
to or even larger than the ctfect of transverse shear deformation for rectangular plates with
large cutouts.
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